Support the Machine Learning in Quantum Science Manifesto

청원서는 다음 주소로 보내집니다.
European Union, National Governments and Science Funding Agencies

141 서명

청원인은 청원서를 제출/인도하지 않았습니다.

141 서명

청원인은 청원서를 제출/인도하지 않았습니다.

  1. 시작됨 7월 2024
  2. 컬렉션 완료
  3. 제출된
  4. 대화
  5. 실패한

청원서는 다음 주소로 보내주시기 바랍니다. European Union, National Governments and Science Funding Agencies

This petition is a call for European funding of research at the interface of machine learning and quantum science as a foundation of future key technologies.
Reason

이유

The signatories of this petition support the Machine Learning in Quantum Science Manifesto. The manifesto can be found under the following link:

Machine Learning in Quantum Science Manifesto

Authors: N. Ares, A. Bohrdt, A. Briggs, G. Carleo, P. Erker (coordination), S. Erne, F. Fedele, M. Gärttner, E. Gil-fuster, M. Granath, S. Grünbacher, M. Heyl, M. Huber, A. F. Kockum, M. Krenn, F. Marquardt, G. Muñoz-Gil, E. van Nieuwenburg, H. Poulsen-Nautrup, P. Rembold, J. Schmiedmayer, M. Schmitt, F. Vicentini, C. Weitenberg
-------------------------------
Executive Summary
-------------------------------
Why machine learning in quantum science? The integration of machine learning in quantum science holds significant potential due to the data-intensive nature of some areas of quantum science and the computational strengths of modern machine learning tools. This synergy can enhance the efficiency of quantum research, drive advancements in quantum technologies, and offer novel approaches to fundamental physics, making it a key area for future research and development.
What advances are to be expected? Machine learning will significantly enhance quantum science by improving quantum computing hardware and software, leading to new discoveries in molecules and materials. It aids in automating and optimising quantum experiments, developing new quantum algorithms, and efficiently simulating complex quantum systems. This integration will also facilitate the precise manipulation of quantum devices and the development of energy-efficient control protocols. Overall, machine learning will drive both fundamental and practical advancements in quantum science.
What needs to be done to unleash these synergies? To fully unleash the synergies between machine learning and quantum science, significant investment in both fundamental and applied research is needed. This includes fostering interdisciplinary collaboration between quantum physicists, machine learning engineers, computer scientists as well as industry stakeholders. Establishing a robust ecosystem with open-source software, standardised data sets and community-driven projects will facilitate progress. Training the next generation of researchers through specialised programs and enhancing public engagement through science communication are also essential. 
We believe that such actions will help Europe remain competitive and lead advancements in next-generation quantum technologies.

The Obergurgl Initiative, Vienna 님, 응원해주셔서 감사합니다.
개시자에게 질문

청원 공유

QR 코드가 있는 이미지

QR 코드가 있는 떼어낼 수 있는 영수증

다운로드 (PDF)

청원에 대한 정보

청원이 시작되었습니다: 2024. 07. 17.
수집 종료: 2024. 10. 31.
지역: Europäische Union
범주: 과학

소식

  • Liebe Unterstützende,
    der Petent oder die Petentin hat innerhalb der letzten 12 Monate nach Ende der Unterschriftensammlung keine Neuigkeiten erstellt und den Status nicht geändert. openPetition geht davon aus, dass die Petition nicht eingereicht oder übergeben wurde.

    Wir bedanken uns herzlich für Ihr Engagement und die Unterstützung,
    Ihr openPetition-Team

시민 참여 강화에 동참해 주세요. 우리는 독립성을 유지하면서도 여러분의 우려를 경청하고 싶습니다.

지금 홍보하세요